Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds
نویسندگان
چکیده
Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.
منابع مشابه
Study on Trend of Biodegradability of Phenolic Compounds During Photo-Fenton Advanced Oxidation Process
Phenolic acids constitute a major group of pollutants which are recalcitrant to common biological treatment. In this study synthetic wastewater containing a mixture of p-coumaric and p-hydroxybenzoic acids was evaluated for photo-Fenton pretreatment. The changes in biodegradability (ratio of biochemical oxygen demand to total organic carbon (TOC)) and mineralization (TOC removal) were monitored...
متن کاملA Highly Diastereoselective and Enantioselective Phase-Transfer Catalyzed Epoxidation of β-Trifluoromethyl-β,β-disubstituted Enones with H2O2
Trifluoromethylated organic compounds, especially chiral quaternary alcohols bearing trifluoromethyl group are of important intermediates in drugs, agrochemicals and etc.An efficient epoxidation of β-CF3-β,β-disubstituted unsaturated ketones (6) has been developed with environmental benign hydrogen peroxide as the oxidant and F5-substituted chiral qua...
متن کاملInvestigation of the Activity of Nano Structure Mn/γ-Al2O3 Catalyst for Combustion of 2-Propanol
This paper reports results of a study regarding the activities of nano structure Mn/γ-Al2O3 and γ-Al2O3 catalysts for oxidation of 2-propanol (as a model of volatile organic compound). Nanostructure of catalysts was revealed using XRD, SEM and TEM techniques. Catalytic studies were carried out in U-shaped packed bed reactor under atmospheric pressure and at the reaction temperature of 150- 500°...
متن کاملUV/ H2O2 Advanced Oxidation Process for Simultaneous Removal of NO and SO2: A Review
This study presents a review on advanced oxidation processes (AOP) for simultaneous removal of NO and SO2. AOP is based on using a strong oxidant such as ozone and H2O2 which is able to generate highly reactive intermediates. The pollutant will be oxidized and removed by these intermediates. In recent years, AOP has been considered as an effective and attractive technology in the field of flue ...
متن کاملCatalytic oxidation of toluene over LaBO3 (B= Fe, Mn and Co) and LaCo0.7B′0.3O3 (B′= Fe and Mn) perovskite-type
In this paper, LaBO3 perovskite type catalyst formulations were prepared by sol-gel auto combustion method using citric acid as the fuel. Activity of catalysts was tested in catalytic oxidation of toluene as a model of volatile organic compounds. LaCoO3 perovskite formulation showed the highest activity among LaBO3 (Fe, Mn and Co) perovskite catalysts. So, LaCoO3 perovskite based catalyst was s...
متن کامل